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STEEPEST DESCENT PATHS FOR INTEGRALS
DEFINING THE MODIFIED BESSEL FUNCTIONS
OF IMAGINARY ORDER

N. M. Temme

ABSTRACT. The modified Bessel function of the third kind of purely imaginary
order:

(o]
Ki,,(z)=/ e‘“°5htcosutdt,
0

is considered for real values of the parameters v,z, z > 0. This function plays an
important role in certain problems of mathematical physics. It is the kernel of the
Kantorovich-Lebedev transform. In this paper we describe the paths of steepest
descent (the saddle point contours) of this integral, giving non-oscillatory inte-
grals. The resulting integral representations are important for obtaining asymp-
totic expansions and for constructing numerical algorithms. We also consider
non-oscillating integrals representing I;, (), the modified Bessel function of the
first kind of purely imaginary order. We summarize similar results for the ordinary
Bessel functions.

1. Introduction

The modified Bessel function of the third kind of purely imaginary order K;,(z) is a
solution of the differential equation

22y oy + (V- 2Py =0. (1.1)

Another solution is the function of the first kind I;,(z). Well-known integral repre-
sentations for these functions are:

1 [ ] 1 00+ )
Kiu(x) — _/ e—zcosh t+ivt dt, Ii,,(x) — 2_7”/ ercosh t—ivt dt; (1_2)

2 —00 00—
see Watson [10, p. 181]. We assume that z > 0, v > 0. K;,(z) is real and an even
function with respect to v; I;, () is complex when v > 0. We define
Ii,_,(l') + I_i,,(x)
2

which is a real solution of (1.1), and even with respect to v. In fact, L;,(z) is the real
part of I;, (z) and K;,(x) is the imaginary part of 1, (z) (up to a factor)

Ly (z) = ; (1.3)

I(2) = Liy(z) — 4 5“‘—2’3 Ki(2). (1.4)
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The pairs {K;,(z), iv(2)}, {Ki(2),Li,(z)} constitute linearly independent solu-
tions of (1.1), with Wronskians

K (@)I(0) = T (2)K}, (@) = Ku(@)L (@) - Lo(@)K) (@)=~ (L5)

The function K, (z) plays an important role in potential problems for a wedge. It is
the kernel of the Kantorovich-Lebedev transform. We have the pair of transforms

o) = [ H@Kedz, )= Zsinbina) [y Kialloty) s

see Lebedev [6] or Sneddon [9]. Asymptotic expansions in connection with this trans-
formation are considered by Naylor [7] and Wong [12].

The functions Kj;,(z), I (z) also play a role as approximants in uniform asymp-
totic expansions of solutions of certain second-order linear differential equations; see
Dunster [2], [3], [4]. In [2] several properties of the functions are discussed; our func-
tion Ly, (x) is the same as Dunster’s, up to a factor depending on v; in [3] and [4] the
results are applied to Legendre functions.

The purpose of this paper is to derive integral representations of K;,(z), I;, (z) with
non-oscillating integrands. Starting points are the integrals in (1.2). The resulting
integrals are convenient representations for numerical algorithms, especially when the
parameters z, v are large. Numerical aspects will be discussed in a later paper.

An extra facet of the paper is giving a demonstration of the method of saddle
points. In fact, the integrals considered here are saddle point contour integrals, and
they also can be used to derive uniform asymptotic expansions of K;,(z), I;.(z) for
large values of the parameters. In our integral representations we distinguish between
the two cases z > v and z < v. In the second case (especially when the parameters are
large), the functions K;,(z), L;,(z) are rapidly oscillating, and difficult to compute.

In Watson [10, Ch. 8], similar contours for integrals representing the ordinary Bessel
functions are discussed. However, the present case of modified Bessel functions of
imaginary order is different and more complicated. In particular, the path of steepest
descent for K;,(z) has rather surprising features when v > z (the oscillatory case).
For convenience, we summarize the results on non-oscillating integrals for the ordinary
Bessel functions in Section 5. In [10] such representations have been used for deriving
the Debye type uniform asymptotic expansions of the functions J,(z), ¥, (z) and of
the Hankel functions Hl(,l)(z), H,(,z)(z).

The Debye type uniform asymptotic expansion of K;,(z), with 2 > v, is given
in Erdélyi et al. [5, Vol. I, p. 87]. An Airy type uniform expansion of K, (z) can
be found in Balogh [1]; see also Olver [8, p. 425] and [2]. In [2] the expansion of
L;,(z) is given as well. The Airy type expansions are derived from the differential
equation (1.1). The point z = v is a so-called turning point of this equation. As
mentioned before, the integrals obtained in this paper can be used for obtaining Airy
type expansions. When transforming the integrals to standard Airy type form, two
saddle points should be taken into account; see Olver [8] or Wong [11] (where also a
general introduction to the saddle point method can be found). The remaining saddle
points will introduce exponentially small contributions in the asymptotic expansion.
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2. The momnotonic case: z >v >0

In this case we write
v=zsind, 0<6< %w. (2.1)

2.1. The contour for K;,(z). When v = 0, the real axis is the path of steepest
descent of the first integral in (1.2), with a saddle point at ¢ = 0. When v > 0 the
path and saddle point shift upwards in the complex plane. In this case, we write

o]
Ki(z) = %/ e~ W gt ¢(t) = z(cosht — itsinf). (2.2)
-0

The saddle point follows from solving the equation ¢'(t) = 0. It suffices to consider
the saddle point tg = 6. The path of steepest descent is defined by the equation
So(t) = Sé(to). Since IP(tg) = 0, this gives the following relation between the real
and imaginary parts of ¢ (we write ¢t = 7 + i, to = 7o + i0g (with 70 =0,0¢ = 6))

1
sing = sin 8 —00 < T < 00, 0<a§ao§§7r. (2.3)

sinh 7’

Hence, the path of steepest descent through the point ty = 46 is given by

o(r) = a,rcsin(sine sin:u')’ —00 < T < 00. (2.4)
(o}
1T/2
0
T

FIGURE 2.1. Steepest descent path (2.4), 6 = 7.

Other solutions of the equation in (2.3) are contours of steepest descent through
the saddle points 7(£7 — 6), and are given by

o (1) =7 —0o(7), o4(r)=7m—0(7). (2.5)

These solutions will be used in the next subsection.
Integrating with respect to 7 on the path described by (2.4) gives the representation

1 [% un @
K (z)= 3 e p dr, (r) =zcoshTcoso + vo, (2.6)
-0
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where o as a function of 7 is given in (2.3). The function ¥(7) is an even function of
7. Observe that dt/dT = 1+1ido/dr and that do/dr, being an odd function of 7, does
not give a contribution in (2.6). Hence, we can write

o0
K, (z) = / e ¥ dr, (1) = zcoshrcoso + vo. (2.7)
0
When z = v the function ¥(7) is not analytic at 7 = 0. When z = v, we have, as

7 — 0 (through real values),
8 4 16 . 32
14175 382725 7441875

From (2.7) it follows that Kj,(z) is positive when 0 < v < z. It is convenient to
extract the dominant factor, by writing

»(r) = %mf + V37| [5‘; + ™+ 0(710)].

Ki(z) = e ¥ /oo e~ (=¥ g (2.8)
0
where
P(0) = Va2 —v? + uarcsin% = z(cos§ + Fsinh).

2.2. The contour for I;,(z) and L;,(z). In this case, we need three saddle points.
The derivative of the function ¢(t) = z cosht — ivt, occurring in the second integral
of (1.2), vanishes at the points

ty =iok =i[(-1)*0 + kr], keZ. (2.9)

The saddle point contour now passes through the saddle points t_1, o, 1, and the path
of integration of the second integral in (1.2) is split into three parts: £_; U Lo U Ly,
where

— L_; runs from oo — 47 to t_1,

— Lo runs from t_; to t; (a segment of the imaginary axis),

— L, runs from t; to oo + im.

On each path we have S¢(t) = 0. On L4 the relation between the real and

imaginary parts of t = T + {0 is given by (2.5) with 7 > 0. Thus we obtain

1 z coshTcoso_+v [ .dO'._]
; = — - T — d
I, (z) o L_le 1+2———dT T
+ _1_ o ez coso+vo d(f
27 Jo_,

1 zcoshrcosoy+rvoy .d0'+
i i —*ldr. (210
+27rz' Ele [1+Zd7] T | )

Hence, by using (1.4) and separating the real part,

o A d
I A Il
o

-1 T ’
= 51— - ezcos otve do — Sl /UO e“‘w(T) dUa (211)
™ T 0

g-1
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FIGURE 2.2. Steepest descent path used in (2.10)

where x > v > 0, 1(7) is given in (2.7), the relation between 7 and ¢ in (2.3), and

do

dr
This gives the requested representation of I;,(z) in terms of non-oscillating integrals.
The integral on the interval [o_;,01] gives the main contribution, especially when the
parameters are large. The integrand peaks at the point o = 09 = . Hence, the main
contribution to this integral comes from a small neighborhood of this point. At this
point the integrand assumes the value exp[1)(0)], compare (2.8).

1
= tano(— - cothr).
T

3. The oscillatory case: 0 <z <v

Under the present condition, we write

v=zxcoshp, p>0. (3.1)

3.1. The contour for K;, (z). In this case, an infinite number of saddle points are
used for obtaining the steepest descent path. However, a simple summation procedure
reduces the number of saddle points to a few, as in the case of I;,(z) in the previous
section.

We write ¢(t) of (2.2) in the form ¢(t) = z(cosht — it cosh ). It follows that the
saddle points of the integrands in (1.2) are now given by

1
tf = :I:T0+§7ri+2k7ri, o=, k€eZ.

The saddle point contour through the saddle tf is defined by the equation S¢(t) =
S¢(tf) = £x(sinh p — pcosh ), that is, by

T4 sinh g — pcosh p

sino = cosh p — -
’ sinh 7 sinh 7

, (3.2)
which is independent of k. The contours cannot have common points with the imagi-
nary axis (where 7 = 0). In fact, this axis separates two groups of contours, namely,
those through t;cl' from those through t;, the first group corresponding to positive
values of 7, and the second one to negative values. The parabola shaped curves satis-
fying (3.2) are shown in Figure 3.1. On each ‘parabola’, two saddle points are located.
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Hence, a complete parabola cannot serve as a path of descent, since one branch ex-
tending to infinity is always a path of ascent. Only parts of the parabola shaped
contours are used for the steepest descent paths.

First, the original contour in (1.2) for K, () is split into two parts: L~ ULT, where

— L~ runs from —oco to 0 and from 0 to +ico,
— L% runs from 4400 to 0 and from 0 to +oo.

Since v > 0, the integrals along £* are convergent at +ico. Next, we deform L£*
along the thickened parts of the saddle point contours shown in Figure 3.1. Owing
to the symmetry, we can consider £* only, along which we take twice the real part
of this integral. On the lower branch of £t (running from t§ to +oc0), we integrate
with respect to 7, on the upper branch (running from +ico to t7), we integrate with
respect to o. The result is

K (z) = %{e_ix [/

To

[e2]

e ¥ (1 + i—f—lg) dr — /oo e*¢<’>(-j—; + z) da] } (3.3)

1
3T

where

X = Sé(tT) = zsinh g — vy, e ¥(7) = gmTcoshreosove (3.4)

and the relation between T and ¢ is given in (3.2) (with the + sign).

21—+

FIGURE 3.3. Steepest descent path used in (3.3)

The second integral in (3.3) can be reduced to an integral over a finite interval.
The fact is that the function

P(O’) — e—zcoshrcosa(g_g + Z)

is periodic with respect to o with period 27, P(o) = P(c + 27). It follows that

o0 1 §n
—vo _ —vo
., P(o)e ™" do = T . P(o)e " do
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Thus we obtain the representation

e 1 g dr
. — ) dr = -¥(r) 21
K;, (z) cosx[/T0 e dr = /%7r e = da]
(e ) 1 %7!’
+sinx[/ 6—1/)(7-)%{ dr — —-—-——_—2?;/ 6—¢(T) dO’]
0 T l1—e ir (3.5)

When the parameters z, v are large the main contribution comes from the point tf{ =
To + 7i/2. At this point, we have exp[—(79)] = exp(—7v/2). This quantity gives a
proper estimate of the maximal absolute value of the oscillating function K, (z).

REMARK 3.1. Integrals with respect to 7 may be replaced by integrals with respect

to o; for instance,
I ix
/ LA T /2 =) 4o
T0 dT 0

In a numerical sense, the integrals with respect to 7 are simpler than those with
respect to 0. The reason is that a simple inversion of the sine function in (3.2) gives
an explicit representation of o(7). Such a simple inversion for 7(o) is not available.

REMARK 3.2. Another point is that if, for instance, one wants to replace

5m/2
/ e—@b(f)ﬁif. do
/2 do

by an integral with respect to 7, one has to write first

5m/2 37/2 57/2
/ R L / om0 a1 4oL / v T 4
/2 do /2 do 37/2 do

since o(7) is two-valued on the corresponding T-interval.

3.2. The contour for I;,(z) and L;,(z). The second integral in (1.2) can be split
up into three parts:

— L_; runs from oo — i to tT,
— Lo runs from t¥, to t7,
— L£; runs from tJ to oo + i.

The integrals along £_; and £; are transformed to integrals along the path from
t to oo, which has been used for Ky, (z). This is done by changing o into —m —
o,m — o, respectively. The integral along Ly is shifted upwards by changing o into
—27 +0; afterwards we reverse the direction of integration from 7 /2 to 57/2 into 57/2
to m/2. The two operations for £y can be established by the single transformation
o — 7 — o. In this way we obtain integrals as used for K;,(z). Corresponding
T values are not changed during these transformations, as follows from the relation
(3.2). Corresponding values of do/d7 do change sign, however.

So we obtain

o= (o) [ -
T0
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FIGURE 3.4. Steepest descent path used in (3.6)

The quantities x and e ¥(") are given in (3.4). The imaginary part of I;,(z)
corresponds to (3.5) (see also (1.4)). Separating the real part gives

cos X o0 do 3
Li(z) = % [~2sinhm / eV dr e / e do]
2m o dr -
. - .
+ X [2 sinh 71'1// e ¥ dr — ™ /2 e"/’(f)f‘z do‘] .
2m 0 ix do (3-7)

When the parameters z, v are large, the main contribution again comes from the point
t& = 10+ Smi. At this point we have exp[—% ()] = exp(—3mv). Hence, the quantity
exp(%m/) gives a proper estimate of the maximal absolute value of the oscillating
functions I;, (z) and L;,(z).

4. Results for the derivatives

It is also of interest to have results for the derivatives; they follow rather straightfor-
wardly from the earlier methods.

4.1. The monotonic case: v = zsinf. The derivatives of K;,(z), I;,(z) are ob-
tained from (1.2). We have

1 [ )
K:u(m) — _5/ cosht e™® cosh t+ivt dt,

—00
1 oco+mi ) (4.1)
Izlu(m) — _/ cosht excosh t—ivt gy
2mi co—Tm1
The analogue of (2.6) reads

1 [ sinfsino — cosh
w(@) =35 Bk = 4.2
Ki@)=3 [ e Oamar, o) LI ohT )

the relation between 7 and o given by (2.4). The function g(7) is the real part of
— cosht dt/dr; the imaginary part is an odd function of 7 and does not give contribu-
tions.
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The result for the I-function is given in terms of the L-function. We obtain from
(1.4)

inh
I,(z) = Ly (z) —i ——~

K{U <$)7

with L}, (x) given as the analogue of (2.11) by

g1 . [ee]
L (z) = 517;/ cos g eECOSTTVT oy sinh T / e_—d’(T)h(T) ir, (4.3)
4 0

where

h(r) = sina(COShT L )

sinh 7

This function is obtained by taking the real part of

do_
-}-—. [— cosh(r +io_) e™™ (1 + i—g—) + cosh(r +ioy) et™ (1 + z—)] ,
27 dr

where o4 are given in (2.5), ¢ in (2.4), and do. /dr = —do/dr in (2.12).

4.2. The oscillatory case: v = z cosh u. Following the analysis that leads to (3.5),
we obtain

/ R 1 e
K, (z) = cosx[ e A(T)dr — e B(T) da]
1 - e—27w %7‘_

To

' e 1
+smx[ € C(T)dT— 1—'8—_5—;;
7 - i

0

jon

x e=¥)D(r) da}, s

where

do dr
= — h i i -5 = o
A(T) cosh7coso + sinhrsino T B(r) =A(7) e

C(r) = — sinh Tsin o — cosh T cos UZ_:’ D(7) IC(T)E,

and the relation between 7 and ¢ is given in (3.1) (with the + sign).
For the function L], (z), we obtain

in

e“'p(T)C'('r) dT+e7”’/2

™

L (z)= C(;rx [—2 sinh 71'1//

To

e ¥ D(r) da]

o

(o9}

(SIS

+ Sinx [—2 sinh'/ru/

fp—es
Y . e B(T)da].

6_¢(T)A(T) dr +e™ /
zm (4.5)
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5. Non-oscillating integrals for the ordinary Bessel functions

We give similar integrals for the ordinary Bessel functions. Some of the results can
be found in Watson [10, Ch. 8]. We only consider real values of the parameters of
the Bessel functions. The starting points are the contour integrals for the Hankel
functions given by

1 oo+ . -1 0 —1iT .
H,Sl)(z) — ___/ eIStht—~ut dt, Hl(,z)(fli) — _/ e:csmh t—vt dt.

T J_oo L

Furthermore we use the relations
1
L@ = 5[HD@) + BR @], Y@) = 5o [BHO @) - B @)

5.1. The monotonic case: v = zcoshu, 4 > 0. In this case, we concentrate on
the functions J,(z), Y, (z). For the first function, we have

1 co+im .
J,,(:l:) — __/ ea:smht—-ut dt.

2ms coO—1m

The real saddle points of the function ¢(t) = zsinht — vt = z(sinht — ¢ cosh ) are
located at t = £u. The path of steepest descent through ¢ = p is defined by (we write
t=71+10)

o
T= arccosh(cosh,u —,—), —T< o<
sino
Using this relation, we obtain the representation

1

Julz) = 2T

m
/ ez(smh T cos o—7 cosh p) do.
—T

For the Neumann function, we use both saddle points and obtain

Y.(z) = __1_ . eE(sinht—tcoshp) g, 1 /1r @ (sinh 7 cos 0 —7 cosh u)é_"; do
e T Jo do

The main contribution in the first result comes from the point ¢ = 0, which corre-
sponds to the saddle point ¢ = p; the main contribution for the Neumann function
comes from the saddle point t = —p.

5.2. The oscillatory case: v = zcosf, 0 < 6 < %n. It is now convenient to

consider the Hankel functions. The saddle point of interest for the first Hankel function
is t = 16, for the second function, the point is t = —i6. After standard manipulations,
we obtain

R dr
(1) _ ¢ z(sinhrcoso—Tcosb) (1 _ s
HV(z)= - /0 e (1 lda) do,

where
x = z(sin§ — 6 cosb).
The relation between 7 and o is defined by

ocosf +sinf — 0 cosb
T = arccosh - , O<o<m.
sino
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The sign of 7 is positive when ¢ > 6 and negative when o < . For the second Hankel
function, we have
H(2)(:II) — e X " ex(sinhrcosa—rcos 9) (1 + Zd_T) do.
v T Jo do

As usual, the result for one Hankel function follows from the other one by changing
the sign of the imaginary unit 4.

In this case it is quite easy to derive the corresponding results for the derivatives
of the functions.
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